Title of Document : ECOLOGICAL INTERACTIONS OF THE CADMIUM - AND ZINC - HYPERACCUMULATING PLANT , THLASPI CAERULESCENS , AND THEIR IMPLICATIONS FOR PHYTOREMEDIATION

نویسندگان

  • Judy P. Che-Castaldo
  • David W. Inouye
چکیده

Title of Document: ECOLOGICAL INTERACTIONS OF THE CADMIUMAND ZINCHYPERACCUMULATING PLANT, THLASPI CAERULESCENS, AND THEIR IMPLICATIONS FOR PHYTOREMEDIATION Judy P. Che-Castaldo Doctor of Philosophy, 2011 Directed By: Dr. David W. Inouye Department of Biology The success of invasive species can be attributed to a combination of abiotic factors, such as abundant resources and favorable climate, and biotic factors, such as low levels of competition and predation or herbivory, at the introduced location. While studies have demonstrated the effects of these factors on known invasive species, the degree to which these factors affect a non-native species can be used to predict its likelihood of becoming invasive. The metal-hyperaccumulating plant Thlaspi caerulescens (Brassicaceae) is potentially useful for remediating soils that are moderately contaminated with Cd and Zn, and has been experimentally introduced to contaminated sites outside of its native range for phytoremediation. To assess the ecological risks involved in introducing metal-hyperaccumulating plants for phytoremediation, including their potential invasiveness, I have performed three studies to examine the abiotic and biotic factors that could influence the establishment of T. caerulescens at three contaminated sites near the Rocky Mountain Biological Laboratory in Gothic, Colorado. In the first two studies, I test the effects of soil metal concentrations and interspecific competition on plant performance, and in the third study I examine the strength of herbivore pressure on this plant. Results from these studies show that the growth rate of T. caerulescens in field conditions is generally low, but higher where there are high concentrations of soil Zn and low concentrations of soil Cu. Interspecific competition between T. caerulescens and a native congener is weak overall, and herbivory pressure from a native Lepidopteran herbivore is also low. Therefore, abiotic conditions are more limiting to T. caerulescens than biotic interactions, and would likely prevent T. caerulescens from becoming invasive or spreading outside of contaminated soils at these sites. In the fourth chapter, I use a long-term dataset to describe the demography of Frasera speciosa (Gentianaceae), a long-lived monocarpic plant. Results show that the population is stable, and despite the low elasticity values for the reproductive stages, masting events must be observed to describe accurately the population dynamics of this species. ECOLOGICAL INTERACTIONS OF THE CADMIUMAND ZINCHYPERACCUMULATING PLANT, THLASPI CAERULESCENS, AND THEIR IMPLICATIONS FOR PHYTOREMEDIATION

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe

Thlaspi caerulescens J. & C. Presl is a distinctive metallophyte of central and western Europe that almost invariably hyperaccumulates Zn to > 1.0% of shoot dry biomass in its natural habitats, and can hyperaccumulate Ni to > 0.1% when growing on serpentine soils. Populations from the Ganges region of southern France also have a remarkable ability to accumulate Cd in their shoots to concentrati...

متن کامل

Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression be...

متن کامل

Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens.

The micronutrient zinc has an essential role in physiological and metabolic processes in plants as a cofactor or structural element in 300 catalytic and noncatalytic proteins, but it is very toxic when available in elevated amounts. Plants tightly regulate their internal zinc concentrations in a process called zinc homeostasis. The exceptional zinc hyperaccumulator species Thlaspi caerulescens ...

متن کامل

Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens.

We have previously identified an ecotype of the hyperaccumulator Thlaspi caerulescens (Ganges), which is far superior to other ecotypes (including Prayon) in Cd uptake. In this study, we investigated the effect of Fe status on the uptake of Cd and Zn in the Ganges and Prayon ecotypes, and the kinetics of Cd and Zn influx using radioisotopes. Furthermore, the T. caerulescens ZIP (Zn-regulated tr...

متن کامل

Differences in whole-cell and single-channel ion currents across the plasma membrane of mesophyll cells from two closely related Thlaspi species.

The patch clamp technique was used to study the physiology of ion transport in mesophyll cells from two Thlaspi spp. that differ significantly in their physiology. In comparison with Thlaspi arvense, Thlaspi caerulescens (a heavy metal accumulator) can grow in, tolerate, and accumulate very high levels of certain heavy metals (primarily zinc [Zn] and cadmium) in their leaf cells. The membrane c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011